Practice Exam for the Midterm 1.

Problem 1

Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
2 & 5 & 3
\end{array}\right)
$$

Determine the nullity and rank of the linear transformation associated to A.

Problem 2

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T(\boldsymbol{i})=(1,1)$, $T(\boldsymbol{j})=(1,0), T(\boldsymbol{k})=(0,1)$. Take basis $\mathcal{A}=\{(1,0),(0,1)\}$ and $\mathcal{B}=$ $\{(1,1),(1,-1)\}$.

1. Determine the matrix representation of T relative to the standard basis $\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ for \mathbb{R}^{3} and \mathcal{A} for \mathbb{R}^{2}.
2. Determine the matrix representation of T relative to the standard basis for \mathbb{R}^{3} and \mathcal{B} for \mathbb{R}^{2}.

Problem 3

Let

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)
$$

1. Determine the inverse matrix A^{-1}.
2. Solve the following system of equations:

$$
3 x+2 y=2,4 x+3 y=5
$$

Problem 4

Let

$$
A=\left(\begin{array}{cc}
5 & 6 \\
-4 & -5
\end{array}\right)
$$

1. Determine all of the eigenvalues of A.
2. Find an invertible matrix C such that $C^{-1} A C$ is a diagonal matrix.

Problem 5

Let f be defined by

$$
\begin{cases}\frac{x^{2} y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

1. Prove that f is continuous over \mathbb{R}^{2}.
2. Determine the directional derivative $f^{\prime}(p ; \boldsymbol{v})$ at the point $p=$ $(1,1)$ with respect to the vector $\boldsymbol{v}=(2,1)$.

Problem 6

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left(\sqrt{x y}, x^{2}+y^{2}\right)$ and $g(u, v)=e^{u v}$.

1. Compute the Jacobian matrix of f
2. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the composition $g \circ f$. Express $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ by using x and y.
